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METHOD FOR SUPPRESSING AND 
REVERSING EPILEPTOGENESIS 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is based on, claims the bene?t of, and 
incorporates herein by reference US. Provisional Applica 
tion Ser. No. 61/046,465, ?led Apr. 21, 2008, entitled 
“METHOD FOR SUPPRESSING AND REVERSING EPI 
LEPTOGENESIS.” 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention Was made With United States government 
support aWarded by the following agency: NIH RR025012. 
The United States government has certain rights in this inven 
tion. 

BACKGROUND OF THE INVENTION 

The ?eld of the invention is methods and devices for detect 
ing and suppressing epileptogenic states and/or reversing 
such epileptic circuits once formed. 
The primary functions of the brain are to transmit, process, 

and store information about the body and the environment. 
Higher order functions such as problem solving and adapta 
tion also exist in some animals and these functions may be 
loosely referred to as components of the learning process. The 
plasticity of neurons and connections betWeen neurons is 
central to these capabilities. HoWever, plasticity is also cen 
tral to epileptogenesis and prior art methods for identifying or 
treating epilepsy cannot explain Why plasticity plays a role in 
both learning and epileptogenesis. There are an enormous 
number of Ways in Which plasticity can go Wrong at all levels 
of description, particularly at the genetic level, Where the 
process of epileptogenesis is beWilderingly complex With 
many contributory factors. Indeed, so intricately is normal 
brain function dependent on the proper mix of receptors, 
channels, chemical environment, and other factors that it can 
be surprising that epilepsy is not more prevalent. 

Current approaches for treating epilepsy using electrical 
stimulation, such as vagal nerve, cortical and deep brain 
stimulation, are empirical. It is unclear hoW these methods 
Work and optimiZing treatment generally involves trying dif 
ferent stimulation protocols and determining by observation 
over time Which Works better. Because people respond dif 
ferently to any given protocol, it is typically not possible to 
design an optimal protocol for any single individual or con 
dition other than by trial and error. In addition, current 
approaches target neuronal hyperexcitability caused by 
imbalances betWeen excitatory and inhibitory in?uences at 
synapses, but do not consider other patterns of neural activity 
that may have a signi?cant effect on epileptogenesis, for 
example, patterns occurring betWeen large groups of neurons. 
It is believed that this limits the effectiveness of current meth 
ods for treating epileptogenesis. 

It Would therefore be desirable to have a method for iden 
tifying, suppressing, and reversing epilepsy that account for 
factors other than neuronal hyperexcitability, particularly 
those related to brain plasticity. 

SUMMARY OF THE INVENTION 

The present invention overcomes the aforementioned 
draWbacks by providing a method for identifying, suppress 
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2 
ing, and reversing epilepsy. The method characterizes epi 
lepsy as a “leamed response” Whose occurrence is dependent 
upon neuronal hyperexcitability and spatial and temporal 
overconnectivity in the brain. By modeling epilepsy in this 
Way, the present invention provides a method for “unleam 
ing” epilepsy. 
The present invention provides a method for identifying 

and reducing a subject’s risk of epilepsy. The method 
includes acquiring neural activity data from the subject and 
analyZing the acquired neural activity data by generating a 
parameter indicative of neuronal hyperexcitability due to 
imbalances betWeen excitatory and inhibitory in?uences, and 
generating a parameter indicative of spatial overconnectivity 
that leads to abnormally Wide spreads of neuronal activity, 
and generating a parameter indicative of temporal overcon 
nectivity that leads to abnormally persistent neuronal activity. 
Then, epileptic patterns in the subject are determined based 
on the generated neuronal hyperexcitability, spatial connec 
tivity, and temporal connectivity parameters and a treatment 
is administered to the subject to reverse the determined epi 
leptic patterns. 

Various other features of the present invention Will be made 
apparent from the folloWing detailed description and the 
draWings 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic depiction of a nodal model of neural 
connectivity in accordance With the present invention; 

FIG. 2 shoWs cross-correlograms for Markovian and non 
Markovian neural netWorks in accordance With the present 
invention; 

FIG. 3 depicts different branching patterns betWeen nodes 
in accordance With the present invention; 

FIG. 4 is a schematic depiction of a system for suppressing 
and reversing epileptogenesis in accordance With the present 
invention; and 

FIG. 5 is a ?owchart setting forth a method for character 
iZing and treating epilepsy in accordance With the present 
invention. 

GENERAL DESCRIPTION OF THE INVENTION 

As a consequence of the organiZational principles for the 
functional behavior of biological neural systems, the ability 
of a neural system to learn appears to confer an intrinsic 
vulnerability to epileptogenesis. The present invention char 
acteriZes epilepsy as an abnormal “leamed” response at the 
netWork level of such a system to repeated provocations and 
therefore provides a method for reversing, or “unlearning”, 
epilepsy. Prior methods for treating epilepsy only addressed 
neuronal hyperexcitability due to an imbalance betWeen exci 
tatory and inhibitory in?uences. HoWever, the present inven 
tion includes a method for reversing epilepsy that includes 
tWo other factors, overconnectivity in space leading to abnor 
mally Wide spreads of neuronal activity and overconnectivity 
in time leading to abnormally persistent activity. 

Neural systems may be considered to obey Hebbian leam 
ing rules, Which are best summarized by the phrase “cells that 
?re together, Wire together.” In the simplest formulation, if 
tWo neurons consistently ?re consecutively, then the connec 
tion from the ?rst-?ring neuron to the second-?ring neuron is 
strengthened. This learning rule represents long-term poten 
tiation (LTP). Conversely, if the ?ring of a ?rst neuron is not 
folloWed by the ?ring of a second neuron, then the connection 
of the connection betWeen the tWo neurons is Weakened. This 
learning rule represents long-term depression (LTD). A third 
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learning rule known as the spike-timing dependent plasticity 
(STDP) combines both LTP and LTD. Generally, these leam 
ing rules are referred to as competitive associative rules. 

Computer simulations utilizing Hebbian learning rules 
tend to result in either runaWay excitation or global silence. At 
the same time, spatial connectivity tends to steer toWards 
either an overconnected state in Which excitation at a neuron 

is immediately folloWed by global or near-global activation or 
an underconnected state in Which excitation at a neuron is not 

folloWed by the activation of any other neuron. Neither of 
these connectivity extremes is useful for information process 
ing and the most useful connectivity levels lie someWhere in 
betWeen to alloW for a Wide variety of spatial activation pat 
terns from the smallest possible clusters of simultaneously 
discharging neurons to the largest possible areas covering 
macroscopic portions of the brain. 

It has been shoWn that cortical slice networks produce 
cascades of activity such that the distribution of siZes folloWs 
a poWer laW. This behavior may be referred to as a “neuronal 
avalanche.” Similar poWer laW distributions of sequence siZes 
have been reported in aWake behaving monkeys, the isolated 
leech ganglion, and in dissociated cultures of neurons. This 
suggests that neuronal avalanches are a general phenomenon, 
re?ecting a fundamental property of neuronal netWorks. 
Additionally, the poWer laW of avalanche siZes suggests that 
these neural netWorks are operating near a “critical point,” so 
named because the poWer laWs are reminiscent of the critical 
point of phase transitions of matter despite lacking the prop 
erty of universality. A critical neural system is balanced 
betWeen a phase in Which activity is dampened and a phase in 
Which activity is expanding. This balanced state can be char 
acteriZed by a branching ratio 0, Which gives the average 
number of “descendant” neurons activated by a single “ances 
tor” neuron in a previous time step. This is expressed as 
folloWs: 

Descendants 
0' = i. 

Ancestors 

Eqn. 1 

Essentially the branching ratio expresses that if one neuron 
?res an action potential, it Will on average cause (I neurons to 
?re in response. Experiments have shoWn that the branching 
ratio tends to hover very near to 0:1 and simulations have 
shoWn that this branching ratio does in fact provide a poWer 
laW siZe distribution. Thus, systems having (III are referred 
to as “critical” systems, While systems having o<l and o>l 
are referred to as subcritical and supercritical systems, 
respectively. Computational modeling studies suggest that 
netWorks operating at the critical point can simultaneously 
optimiZe information processing and storage, computational 
poWer, and stability. When the netWork deviates from the 
critical point, information processing and stability are com 
promised. A neural netWork Whose job it is to process infor 
mation, learn, and adapt must therefore maintain criticality, 
even as synaptic Weights change strength during the process 
of learning. This suggests Why biological neural systems tend 
to maintain criticality, because, in the face of the destabiliZing 
effects of learning, maintaining criticality re-stabiliZes the 
system and alloWs the system to continue learning. 

Referring to FIG. 1, the present invention characterizes 
supercritical systems Where o>l as epileptogenic, thereby 
implying that spatial overconnectivity is an important factor 
in the occurrence of spontaneous seiZures. The present inven 
tion may employ a simple, node-based model, such that indi 
cated at 102 to analyZe the effect of provocations, such as 
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4 
status epilepticus and acute deafferentation (such as occurs in 
post-traumatic brain injury) on criticality and inducing epi 
leptic seiZures. In this model, a local grouping of neurons is 
represented by a node that can ?re a population spike either 
spontaneously With no input from other nodes or in response 
to activity at other nodes. According to the model, at a given 
time t, the probability that node i ?res spontaneously Within a 
selected time WindoW is given by S(i;t), Which can differ 
betWeen nodes and can also vary in time. At any given time, 
the conditional probability that a prior population spike at 
node j causes a population spike at node i Within a selected 
time WindoW is given by P(i, j ;t). This conditional probability 
can differ betWeen each pair of nodes and can vary in time. 
Therefore, the branching ratio can be de?ned as the sum of 
outputs to all other nodes: 

Eqn. 2 

A corresponding measure of excitatory input at a given 
node i can be given by the input ratio, Which is de?ned as: 

Eqn. 3 

While the branching ratio is a pre-synaptic attribute and the 
input ratio is a post-synaptic attribute, they are both measures 
of connectivity. Critical connectivity occurs When the branch 
ing and input ratios are at unity. As Will be described later, 
unleaming epilepsy can involve applying stimuli to “tune” 
the branching ratios to acceptable values and restore critical 
connectivity. 
As mentioned above, prior art methods for reducing epi 

lepsy risk only focus on reducing neuronal hyperexcitability. 
HoWever, maintaining ?ring rate homeostasis alone Will not 
guarantee that critical homeostasis is maintained. In the pres 
ence of Hebbian learning, critical and ?ring rate homeostasis 
are independent principles and both must exist for a neural 
system to be algorithmically stable. It has been noted from the 
model that the scaling of the P(i, j;t)’s must operate more 
quickly than the scaling of the S(i;t)’ s and that the greater this 
relative difference in scaling speed, the more stable the sys 
tem. Further, it is important to distinguish spontaneous-re 
lated activity from connectivity-related activity, that is, activ 
ity due to S(i;t) versus P(i, j;t), because the tWo types of 
activity often do not change in parallel. In fact, they often 
change to counterbalance each other. 

For example, forced increased activity in a subset of neu 
rons during a simulated seiZure Was found to trigger homeo 
static mechanisms that scale doWn all S(i;t)’s and P(i, j ;t)’s to 
very small values. When the simulated seiZure stops, homeo 
stasis causes the S(i;t)’s and P(i, j;t)’s to recover to baseline 
values. HoWever, since the scaling of the P(i, j;t)’s operates 
more quickly than the scaling of the S(i;j)’s, the total connec 
tivity as measured by either branching or input ratio can 
overshoot steady state values for a time until the spontaneous 
?ring probabilities, the S(i;j)’s, return to steady state values. 
Therefore, in the post-ictal state, the overall activity is 
decreased relative to baseline, but the level of connectivity is 
supercritical. As a result, if a population spike occurs in the 
post-ictal period, there is an increased chance of an excitation 
having an abnormally Wide spatial spread. If such a hyperex 



US 8,301,257 B2 
5 

tended state occurs frequently enough in a learning system, 
then it Will be “learned” and “bumed” into memory. If the 
state is burned into memory, then there is an increased like 
lihood that the state Will be reactivated at some random time 
in the future. The reactivation of spatially hyperextended 
states is a necessary condition for epilepsy, as seiZures in 
epilepsy tend to start from the same focus in a stereotypic Way 
and each seiZure focus must involve a macroscopic number of 
neurons to generate clinical symptomatology. Thus, it has 
been determined that prolonged post-ictal states are epilep 
togenic, While shorter seiZures With no post-ictal state are not 
as epileptogenic. 
When only the effects of neuronal hyperexcitability and 

spatial overconnectivity are considered by the model of the 
present invention, simulations of epilepsy shoWed an 
increased activation of spatially hyperextended states, but did 
not shoW the rhythmic, hyperactive, and repetitive activation 
of spatially hyperextended states that is expected in seizures. 
This is re?ected in the Well-knoWn phenomenon of isolated 
interictal spikes seen on clinical scale EEG’s that represent a 
state of local supercritical connectivity, spanning brain areas 
from millimeter to centimeter lengthscales. HoWever, these 
activation patterns do not represent seiZures because they do 
not persist and patients exhibit minimal to no clinical mani 
festations during their occurrence. It Was therefore deter 
mined that overconnectivity in time is also an important factor 
in the occurrence of spontaneous seiZures. 

Typical models for neuronal activity are Markovian, that is, 
inputs from times earlier than one step back are “forgotten.” 
Markovian connectivity is adequate for coding static 
memory, but is not reliable for coding temporal sequences 
because temporal links induced by Markovian connectivity 
are fragile. This can be seen by considering ?ve distinct 
patterns of spatial activation, A, B, C, D, and E. A Markovian 
brain trying to learn the temporal sequence AQBQCQDQE 
Would learn the sequence as four separate links, A—>B, B—>C, 
CQD, and D—>E. The disruption of any one of the four links 
by chance Would cause the loss of the Whole sequence. For 
example, if pattern C mis?res, there is no Way to look back 
further in time and see that it Was preceded by patterns B and 
A and that, therefore, the current pattern is probably C and the 
next pattern should be D. 

The ability to look further back in time requires non-Mark 
ovian connectivity. In a non-Markovian brain Where P(i, j ;t) is 
alloWed to remember What happened four time steps back, the 
temporal sequence AQBQCQDQE can be learned in its 
entirety. If a given pattern mis?res, it may be possible that the 
correct ?ring of previous patterns contains enough informa 
tion to “skip over” the mis?red pattern to ?nish the remainder 
of the sequence correctly. Relating this to epileptogenesis, if 
plastic non-Markovian connectivity exists in the brain, then it 
Would be possible for a looping temporal sequence such as 
AQBQCQAQBQCQetc. to be created or accidentally 
learned. Non-Markovian connectivity can be detected using a 
cross-correlogram in the time domain, as shoWn in FIG. 2. A 
cross-correlogram 202 for a purely Markovian netWork typi 
cally decays quickly and monotonically (exponentially) in 
time, While a cross-correlogram 204 for a netWork With both 
Markovian and non-Markovian connectivity generally 
extends beyond the quick initial period of exponential decay 
and may have a long-time shoulder 206 or distinct bumps that 
occur at more substantial delays. It is contemplated that non 
Markovian activity corresponds to the micro-oscillations that 
have been observed in epileptic brains. Temporal overcon 
nectivity, When combined With the conditions of neuronal 
hyperexcitability and spatial overconnectivity, should result 
in an electrographic seiZure. 
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6 
Therefore, according to the present invention, the three 

conditions for epilepsy are neuronal hyperexcitability, spatial 
overconnectivity, and temporal overconnectivity. While these 
conditions need not be present continuously in an epileptic 
brain, it is contemplated that they must all exist for sponta 
neous seiZures to occur. Therefore, to reduce a subject’s risk 
of epilepsy, the present invention alloWs these conditions to 
be analyZed and characterized. Because prior art techniques 
exist for identifying and addressing neuronal hyperexcitabil 
ity, only methods for treating spatial and temporal overcon 
nectivity Will be discussed in detail. 
The degree of spatial overconnectivity in a subject can be 

assessed by determining a branching ratio for the subject. One 
technique for determining the branching ratio includes 
employing an adapted version of the Ornstein-Zernike equa 
tion, Which is typically used in condensed matter physics to 
combine microscopic intermolecular interactions in various 
Ways and estimate a direct correlation from Which the total 
correlation function can be calculated. The present invention 
reverses this process by measuring the total correlation func 
tion experimentally and employing the Ornstein-Zemike 
equation to estimate the direct correlation function therefrom. 
This estimate is valid for Markovian and non-Markovian 
connectivity and for loW and moderately elevated values of 
the branching ratio. 

Pairwise cross-correlograms can be used to identify a 
casual relationship betWeen unit potentials or populations 
spikes occurring at tWo different electrodes, but cannot be 
used to directly calculate a branching ratio, because, in addi 
tion to the direct correlation, pairWise cross-correlograms 
also implicitly include cross-correlations betWeen many 
intermediate interactions. That is, the cross-correlogram C(i, 
j;t) contains not just the interaction j—>i (by Which it is meant 
that a population spike at node j directly causes a spike at node 
i), but it also contains interactions from “chain diagrams” 
such as jQklQi, jQklQkzQi, and all other higher order 
chain diagrams as Well as all possible “branching” diagrams 
such as those shoWn in FIG. 3. The adapted Ornstein-Zemike 
equation is employed to extract an approximation of the 
direct-correlation from the total correlogram. If DoZ(i ,j;t) is 
the Ornstein-Zernike estimate of the direct correlation func 
tion, then it can be related to the total correlogram by: 

N 1 Eqn. 4 

The direct correlation function can then be extracted from 
Eqn.A4 by Fourier transforming into frequency space, solving 
for DOZ(i,j;f), and inverse-transforming back into the time 
domain. The branching ratio can subsequently be estimated 
us1ng: 

NNT 

[:1 11; 1:0 

Eqn. 5 

Where T is a time beyond Which one does not expect any 
direct correlations. For example, in practice, it is generally 
found that at times beyond 2-3 s, Eqn. 5 is not sensitive to 
choice of T. Once the branching ratio is determined, its mean 
value and ?uctuations over time may be determined as Well. 
A more general method for determining branching ratio is 

based on a model similar to the node-based model 102. This 
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model includes a set of nodes labeled by iIl to N, each of 

Which has an activation level A(i, t) that gives the total prob 
ability that node i ?res at some point in the time interval (t—ot, 
t], Where 6t is the time step. Each node represents the local 
?eld average over some number of neurons near one micro 

electrode. Each nodal ?ring event corresponds to a population 
spike representing the near- simultaneous action potential dis 
charge of a subpopulation of nearby neurons. The term nodal 
?ring events is used to distinguish communal action potential 
discharges from other events, such as loWer amplitude post 
synaptic potentials. The activation level A(i, t) is determined 
by tWo factors. First, the probability that node i can ?re 
spontaneously at time t, represented by the spontaneous ?ring 
probability S(i, t). Second, the probability that node i ?res at 
time t due to ?ring at node j at some prior time, given by G(i, 
j;t). Since A(i, t) is the probability that node i ?res, it can be 
mathematically expressed as one minus the probability that 
node i does not ?re: 

Non-Markovian connectivity can be introduced by alloW 
ing G(i, j;t) to depend on nodal ?ring events from node j 
Which occurred at times preceding time t. This “memory” 
effect is most easily expressed by introducing a “memory 
kernel” H(i, j;t'). If H(i, j;t') is relatively large, then ?ring 
events at node j at a time t—t' Will have a relatively large effect 
on the probability that node i Will ?re at time t. Conversely, if 
H(i, j;t') is small, then ?ring events at node j at an earlier time 
(t—t') Will have a relatively small effect on the probability that 
node i Will ?re at time t. The mathematical expression of this 
relationship is given by: 

‘x’ Eqn. 7 

G0. 1'; r) = 2 Fo'; 1- 011101111’); 

Where F(j;t):l if node j ?res at time t and F(j;t):0 other 
Wise. To build in non-Markovian long term potentiation or 
depression, one has to increase or decrease H(i, j ;t') according 
to Whether nodes i and j ?re in the correct sequence With a 
given time interval t'. For example, for LTP, one may intro 
duce a Hebbian learning factor C H(t') that gives the factor by 
Which to increase H(i, j;t') if node j should ?re at a time 
interval t' preceding ?ring at node i. The Hebbian learning 
rules, generaliZed for non-Markovian plasticity for LTP and 
LDP are respectively given by: 

The learning rule for spike timing dependent plasticity 
(STDP) is a combination of Eqn. 8 and Eqn. 9. In STDP 
learning, if node j consistently ?res before node i, not only is 
the connection j—>i strengthened, but the connection i—>j is 
Weakened. Connectivity may then be measured in terms of the 
branching and input ratios de?ned in Eqns. 2 and 3, Where: 
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This model may be employed to extract the branching ratio 
from neural activity data and is useful because it is a learning 
model that can imitate the behavior of a real neural system. 
For example, if there are N experimental electrodes gathering 
neural activity data from a subject, then the simulated model 
can include N nodes and have a spontaneous ?ring probability 
S(n;t):0 and a Hebbian learning factor C H(t):0.l for all times 
from t:0 to t:1000 ms. The ?ring times of the simulated 
system F(n;t) can then be assigned the ?ring times for each 
electrode and STDP learning rules in accordance With Eqns. 
8 and 9 may be applied. This causes the model to train on the 
experimental data, Which Will cause the memory kernels Ht(i, 
j;t) to evolve in time according to the acquired neural activity 
data. If tWo nodes have a certain probability of ?ring in 
sequence With a certain probability, then the magnitude of 
that probability and the duration of the time delay Will be 
re?ected in the memory kernel betWeen the tWo nodes. After 
the memory kernels reaches steady state values, the branch 
ing ratio may be extracted using equation Eqn. 2. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Referring to FIG. 4, the present invention may be per 
formed using a computer Workstation including a processor 
402 that executes program instructions stored in a memory 
404 that forms part of the storage system 406. The processor 
402 includes internal memory and I/O control to facilitate 
system integration and integral memory management cir 
cuitry for handling all external memory 404. The processor 
402 also includes a bus driver that provides a direct interface 
With a multi-bus 410, Which is an industry standard bus that 
transfers data betWeen the processor 402 and a number of 
peripheral controller cards. These include a disc controller 
412, Which provides a high-speed transfer of data to and from 
a CD-ROM drive 414, and a disc drive 416. A graphics con 
troller 418 couples the bus 410 to a monitor 420 through a 
standard VGA connection 422 and a keyboard and mouse 
controller 424 receives data that is manually input through a 
keyboard and mouse 426. 

The bus 410 also connects to a neural data acquisition 
apparatus 428, such as an electroencephalograph (EEG) or 
magnetoencephalograph (MEG), that acquires neural activity 
data from a subject. A neural stimulation apparatus 430, such 
as an adapted deep brain stimulation (DBS) device, also con 
nects to the bus 410 to alloW electrical stimulation patterns 
determined by the Workstation to be applied to a patient. 
Because electrical stimulation may be required on an ongoing 
basis, it is contemplated that the electrical stimulation device 
includes a poWer source, internal memory, and data process 
ing capabilities so that it may be disconnected from the Work 
station. The bus 410 also connects to a communications con 
troller 432 that connects to an intranet that links the 
Workstation to one or more patient-data acquisition systems, 
a department PAC system, or institution data management 
system. 

Referring to FIG. 5, having outlined general de?nitions of 
and means of characterizing the three conditions for epilepsy, 
a method for reversing epilepsy that addresses each of these 
conditions and may be performed using the above-described 
Workstation begins at process block 502 With the acquisition 
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of neural activity data from the subject, for example, using the 
neural data acquisition apparatus 428. As indicated generally 
at 504, the acquired neural activity data is then analyZed to 
determine the degree to Which the three conditions for epi 
lepsy are present in the subject. A parameter indicative of 
neuronal hyperexcitability is generated at process block 506 
using, for example, prior art techniques, such as monitoring 
the neuronal ?ring rate and averaging this over time. 

At process block 508, connectivity in space is analyZed by 
determining the branching ratio 0 from the acquired brain 
activity data. This may be performed using the above-dis 
cussed general method employing Eqns. 8 and 9 or the Om 
stein-Zemike equation-based method, Which employs Eqn. 4. 
Values of othat are greater than one indicate overconnectivity 
in space. At process block 510, connectivity in time is char 
acteriZed and a parameter indicative of temporal over-persis 
tence is generated. For example, this may be achieved by 
identifying temporally recurrent signals in the acquired neu 
ral activity data and looking for micro-oscillations. 

At process 512, the cumulative effect of the three condi 
tions is analyZed to characterize eliptogenic patterns in the 
subject and determine a treatment that Would reduce the risk 
of epilepsy. For example, intervention targeting neuronal 
hyperexcitability may also take into account interictal base 
line activity and netWork connectivity, as simulations using 
the above-discussed model predict that suppression of neu 
ronal ?ring rates to levels beloW a set point can result in 
compensatory supercritical connectivity (that is, spatial over 
connectivity), Which actually further promote epileptogen 
esis and result in the generation of seiZure circuits. Likewise, 
spatial overconnectivity may be addressed by arti?cially and 
rapidly boosting spontaneous neural activity to near steady 
state values Whenever the brain enters a supercritical state to 
relieve the drive toWards supercritical connectivity. This 
counterintuitive idea arises directly from analysis of the com 
puter model and it is contemplated that this may be one 
possible mechanism by Which electrical brain stimulation 
Works in the treatment of refractory epilepsy. 

Temporal overconnectivity can be addressed by identify 
ing learned seiZure circuits, for example, 
AQBQCQAQBQCQetc, and “Writing” onto the brain 
speci?c spatiotemporal patterns that cause the epileptic cir 
cuit to be reWritten or erased. For example, if a given seiZure 
circuit is given by AQBQC, then electrical stimulation may 
be employed to activate the sequence BQA at random inter 
vals. Similarly, another technique may include repeatedly 
activating the sequence AQB—>C—>X, Where X is a random 
pattern that is different for each presentation. After repeated 
presentations of a random pattern X, it is expected that the 
recurrent loop AQBQCQAQBQCQetc can be broken and 
“unleamed”. 

After the treatment pattern is determined, then treatment is 
administered to the subject at process block 514 using, for 
example, stimulation apparatus 430 to apply selected electri 
cal stimuli to the speci?ed brain locations. 

The present invention has been described in terms of the 
preferred embodiment, and it should be appreciated that 
many equivalents, alternatives, variations, and modi?cations, 
aside from those expressly stated, are possible and Within the 
scope of the invention. Therefore, the invention should not be 
limited to a particular described embodiment 
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The invention claimed is: 
1. A method for identifying and reducing a subject’s risk of 

epilepsy, the method comprising: 
a) acquiring neural activity data from the subject; 
b) analyZing the acquired neural activity data by: 

b) i) calculating, from the acquired neural activity data, 
a parameter indicative of neuronal hyperexcitability 
due to imbalances betWeen excitatory and inhibitory 
in?uences; 

b) ii) calculating, from the acquired neural activity data, 
a parameter indicative of spatial overconnectivity that 
leads to abnormally Wide spreads of neuronal activity; 
and 

b) iii) calculating, from the acquired neural activity data, 
a parameter indicative of temporal overconnectivity 
that leads to abnormally persistent neuronal activity, 
Wherein the parameter indicative of temporal over 
connectivity accounts for non-Markovian effects; 

c) determining epileptic patterns in the subject based on the 
parameters calculated in step b); and 

d) administering a treatment to the subject con?gured to 
reverse the epileptic patterns determined in step c). 

2. The method as recited in claim 1 Wherein the neural 
activity data is acquired from the subject using at least one of 
electroencephalography and magnetoencephalography. 

3. The method as recited in claim 1 Wherein the parameter 
indicative of spatial overconnectivity calculated in step b)ii) 
is a branching ratio. 

4. The method as recited in claim 3 Wherein step b)ii) 
includes estimating the branching ratio using an adapted Om 
stein-Zemike equation that is adapted to estimate a direct 
correlation function from a measured total correlation func 
tion. 

5. The method as recited in claim 3 Wherein step b)ii) 
includes estimating the branching ratio using a node-?ring 
model including a memory kernel. 

6. The method as recited in claim 1 Wherein step d) includes 
applying a selected electrical stimulus to the brain to disrupt 
epileptogenic neural circuits. 

7. The method as recited in claim 6 Wherein the electrical 
stimulus is con?gured to disrupt the epileptogenic neural 
circuits by inducing a designated neural activity pattern at 
random intervals. 

8. The method as recited in claim 6 Wherein the electrical 
stimulus is con?gured to disrupt the epileptogenic neural 
circuits by inducing a random neural activity pattern at des 
ignated intervals. 

9. The method as recited in claim 6 Wherein the electrical 
stimulus is applied using a deep-brain-stimulation device. 

10. The method as recited in claim 4 Wherein step b)ii) 
includes: 

producing a cross-correlogram from the neural activity 
data acquired in step a), the produced cross-correlogram 
being indicative of a total correlation function; and 

estimating the direct correlation function using the pro 
duced cross-correlogram and the adapted Omstein 
Zernike equation. 

11. The method as recited in claim 10 Wherein step b)ii) 
includes estimating the branching ratio from the estimated 
direct correlation function. 

* * * * * 


